翻訳と辞書
Words near each other
・ Saccharopolyspora
・ Saccharopolyspora erythraea
・ Saccharopolyspora hirsuta
・ Saccharopolyspora rectivirgula
・ Saccharopolyspora spinosa
・ Saccharum
・ Saccharum arundinaceum
・ Saccharum barberi
・ Saccharum bengalense
・ Saccharum edule
・ Saccharum munja
・ Saccharum officinarum
・ Saccharum ravennae
・ Saccharum spontaneum
・ Saccheri quadrilateral
Saccheri–Legendre theorem
・ Sacchetti
・ Sacchettificio Monzese
・ Sacchettoni
・ Sacchi
・ Sacchidananda Jnaneshwar Bharati
・ Sacchin
・ Saccidananda Ashram
・ Sacciolepis
・ Saccisica
・ Sacco
・ Sacco (disambiguation)
・ Sacco (river)
・ Sacco and Vanzetti
・ Sacco and Vanzetti (2006 film)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Saccheri–Legendre theorem : ウィキペディア英語版
Saccheri–Legendre theorem
In absolute geometry, the Saccheri–Legendre theorem asserts that the sum of the angles in a triangle is at most 180°.〔.〕 Absolute geometry is the geometry obtained from assuming all the axioms that lead to Euclidean geometry with the exception of the axiom that is equivalent to the parallel postulate of Euclid.〔There are many axiom systems that yield Euclidean geometry and they all contain an axiom that is logically equivalent to Euclid's parallel postulate.〕
The theorem is named after Giovanni Girolamo Saccheri and Adrien-Marie Legendre.
The existence of triangle with angle sum of 180 degrees in absolute geometry implies Euclid's parallel postulate. Similarly, the existence of at least one triangle with angle sum of less than 180 degrees implies the characteristic postulate of hyperbolic geometry.
Dehn gave an example of a non-Legendrian geometry where the angle sum of a triangle is greater than 180 degrees, and a semi-Euclidean geometry where there is a triangle with an angle sum of 180 degrees but Euclid's parallel postulate fails. In Dehn's geometries the Archimedean axiom does not hold.
==Notes==



抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Saccheri–Legendre theorem」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.